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ABSTRACT

All correctly designed regulatory instruments, such as taxes and

quotas, are equally effective in increasing consumer and producer

surpluses in markets when externalities exist, when complete

information is available, and when adjustments of the level of the

instruments are costless. However, with the existence of uncertainty,

it is well known that one instrument or another may produce a higher

 expected present value of. net social benefits than the others. In

addition, costs of or constraints on adjusting the levels of the

instruments also create differences in the relative performance of

alternative instruments. 

A combination discrete-time and continuous-time stochastic model

of a fishery is constructed in this report. Under the assumption

that the level of an instrument cannot be changed during the fishing

season, analytical and numerical dynamic programming are employed to

find the optimal levels of a per-unit tax and an instantaneous harvest

rate quota, given the observed size of the fish stock at the beginning

of the season. Numerical dynamic programming is applied to the Pacific

coast pink shrimp fishery, and tax and quota systems are found to

produce approximately equal net benefits in this fishery.
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C H A P T E R  1

INTRODUCTION AND PRELIMINARY MODELS

INTRODUCTION

The economic efficiency of markets in which externalities are

present can theoretically be improved by regulation. A wide variety of

regulatory instruments is available for this purpose, including taxes,

quotas, price controls, input controls, and combinations of two or more

basic instruments. The question of which type of instrument is

superior has been argued in the literature for some time.

Consensus has been reached on the point made by Weitzman (1974)

that in the presence of perfect information, and in the absence of

flexibility constraints, properly designed instruments of all types

are ranked equally on the basis of economic efficiency (Laffont 1977;

Dasgupta and Heal 1979; and Brown and Boontherawara 1982). There may

be distributional, social, political, administrative, or enforcement

considerations which swing the balance in favor of one or another, but

in terms of maximizing the sum of consumer and producer surpluses, none

can be shown to be superior.

This conclusion follows from the fact that when complete

information is available, the economically efficient rate and

distribution of production (or effluent discharge) are known. If there

are no constraints on the levels at which regulatory instruments can be

set or on the frequency with which they can be adjusted, any correctly

designed instrument can be set at the level which elicits this rate.
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Even in the presence of uncertainty, if it is feasible to

implement contingency rules which specify the level of the instrument

under all possible future states of the world, all instruments perform

equally well ? But such rules are complicated, and are not used.

The literature initiated by Weitzman, however, demonstrates that

when relatively simpler instruments must be used in the face of

uncertainty, one instrument or combination of instruments may

outperform the others (Laffont 1977; Yohe 1978; and Dasgupta and

Heal 1979)‘. Which one performs best depends on the assumptions and

parameter values of the model being used to describe a particular

activity. The key feature leading to this result is the requirement

that the level of the instrument must be set before all information is

gathered, but the economic agents subject to regulation make their

decisions about the rate at which to produce output after more

information has become available. Therefore, the agents produce

different rates of output under different instruments, whose levels

were set on the basis of expected parameter values.

Weitzman considered a model-in which marginal benefit and

marginal cost were linear, with known slopes. The uncertainty was in

the vertical position of these curves, but means and variances of the

intercepts were known. No instrument would be set, except with

probability less than one, at the full-information optimum level, and

therefore, some welfare loss was to be expected. Assuming that the

chosen instrument would be set at the level which minimizes expected

welfare loss, Weitzman determined that the difference in expected

welfare loss under price controls and under quantity controls depends

on’ the values of the slopes, variances, and covariances, the number of
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separate production units, and the correlation between the marginal

costs of the production units. In the simplest case, in which the

costs of the production units are perfectly correlated and the cost and

benefit disturbances are uncorrelated, the choice of instruments

depends only on the relative slopes of the marginal cost and benefit

curves. For example, when the marginal cost (supply) curve is less

steep than the marginal benefit curve, quotas are preferred to controls

on the price received by producers. The reason is that vertical

perturbations of the marginal cost curve will result in relatively

l a r g e  o v e r - or under-production if the price is fixed.

Inflexibil i ty in, or the presence of significant costs of, setting

and adjusting instrument-levels affects the relative performance of

different instruments-independently of uncertainty. This fact, which

is mentioned only in passing by Dasgupta and Heal (1979), will be

demonstrated heuristically, later in this chapter.

Until recently, the voluminous literature on management of the,

externality arising from the common property nature of many natural 

resources was largely concerned with determining the optimal level or

time path of either the harvest rate or the effort rate (Gordon 1954;

Plourde 1970; Brown 1974; Clark and Munro 1975; and Burt and

Cummings 1977). In other words, the focus has been on how to set the

level of one or two instruments. A subset of this literature deals

with optimal management under uncertainty (Burt 1964; Reed 1979;

Ludwig 1980; and Charles 1983b; also see Andersen and Sutinen 1981 for

a survey of the literature on fisheries and uncertainty).

To date, few researchers have delved into the relative performance

of alternative instruments in regulating fisheries. Three exceptions
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are Beddington and May (1977), Andersen (19820, and Koenig (1984).

Beddington and May, who are biologists, compared the time required for

a population to return to equililbrium after a disturbance under

constant (inflexible) effort and constant harvest policies, and did not

consider economic criteria. Andersen concluded that when the only

uncertainty is in the exogenous ex-vessel price level and when

fishermen are risk averse, price controls are superior to quotas and

per-unit taxes.

Koenig made a more general extension of the analysis of optimal

instrument choice under uncertainty to the dynamic setting of natural

resource management. Using a linear-quadratic programming model, he

applied an approach similar to Weitzman’s as to the choice of

instrument in a fishery and-extended the analysis to other instruments

in addition to quotas and controls on prices received by producers,

including specific and ad valorem taxes and controls on pricespaid by

consumers. He found that when the size of the fish stock can be

accurately observed, a combination of specific and ad valorem taxes

always outperforms the other instruments. If, however, this

combination tax is not feasible, his conclusion is similar to

Weitzman's, i.e., the choice of instrument depends on certain parameter

values in the fishery being modelled. These parameters include the 

slope of the social marginal cost function, which is the sum of the

private and external marginal costs. In this context, marginal

external cost is the discounted future surplus foregone by society when

current production is increased.

A feature of previous studies of optimal quota and effort control

adjustment is the use of models and dynamic optimization methods which
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consider time to be either strictly, discrete or strictly continuous.

Neither approach is completely satisfactory when used alone. Koenig’s

results, for example, are limited to fisheries in which no natural

stock growth occurs during the fishing season. This structure can be

realistically assumed only for fisheries with very short open seasons.

Policy implications of continuous-time analyses, on the other hand,

tend to be impractical in that they-require continuous monitoring of

stock size and continuous adjustment of the chosen regulatory

instrument. In reality, measurement of stock size and adjustment of

instrument level are accomplished only periodically. That is, there

are flexibility costs which are ignored in these models.

While these models may adequately approximate reality in some

cases, there is potential benefit in developing an approach to setting

instruments at their optimal levels and to choosing the optimal

instrument, which incorporates both the continuous-time nature of

fishing and stock dynamics in many fisheries and the discrete-time

nature of regulatory behavior. The longer the season and the faster

 the rate of change in stock size, the greater the potential benefit

will be. This is due to the fact that a long season and a fast stock

size change rate both reduce the realism of discrete-time models and

increase the welfare loss from insufficiently frequent adjustment of

instrument level.

It has been suggested that a rapid. stock growth rate reduces the

need for careful management of the stock because the stock can recover

quickly from overfishing. In other words, nature "forgives" management

errors. However, forgiveness is forthcoming only if errors are
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detected and corrected. If inappropriate models are used continually’

for management, the welfare loss might be significant.

The objective of this research is to develop a simple combination

discrete-time and continuous-time stochastic model, and to incorporate

both uncertainty and inflexibility into the decision process for

choosing the optimal type and level of regulatory-instrument.

In order to make the problem analytically tractable, it is

necessary in both discrete-time and combination models to make

linearity and capital exogeneity assumptions which put it in the form

of a dynamic programming problem with a quadratic objective function 

and linear stock growth. The analytical approach demonstrates that’

under these simple assumptions, no particular instrument can be

presumed to be superior in all fisheries. However, the true forms of

some of the basic functions in the models are clearly nonlinear, and

the quantity of-capital in the fishery is usually endogenous. This 

approach is probably  not useful, therefore, for actually managing a

real fishery. 

Alternatively, one can construct a more plausible model and employ’

numerical dynamic programming on a computer. A problem with this

approach is that the number of variables whose- ranges must be divided.

into discrete intervals and iteratively looped through can be

sufficiently large that the programs are very expensive to run. This

is the so-called "curse of dimensionality.”

As a compromise between using the unrealistic linear model and the

computationally expensive nonlinear model, it may be worthwhile to

perform numerical dynamic programming with linear functions, which are

obtained by approximating the true nonlinear functions at appropriate
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points. The points around which Taylor series expansions were made

would change in each period, so the approximation accuracy of the

solutions might be acceptable. Some indication of the accuracy of this

method could be gained by comparing its results in specific fisheries

with those obtained by using a nonlinear model when available resources

permit doing so. No such comparison is made here.

One of the unique implications of the combined discrete-time/

continuous-time model is that uncertainty about the stock growth rate

is important; in both strictly continuous-time and strictly discrete-

time models, growth rate uncertainty is irrelevant to the choice of

instrument. However, the general conclusion that the optimal choice of

the simple instrument depends on the fishery under consideration

remains valid in the combination approach.

In the remainder of this first chapter, a heuristic demonstration

of the fact that inability to change the level of the regulatory

instrument can render one instrument superior to the others, even with

complete information, is presented. A stochastic model is then

presented which requires the assumption that the fishery system

proceeds very rapidly to a steady state in every period. While the

model has only very limited applicability because of this assumption,

which is a very strong one, it serves to illustrate some principles

of optimal regulatory instrument choice under uncertainty which cannot

easily be seen in the more general models developed in later chapters.

Moreover, it has the advantage of needing less information to make it

operable than do the more general models.

Chapters 2 and 3 discard the steady-state assumption and present

a more general model with linear marginal benefit, marginal cost, and
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stock growth rate functions, and with exogenous harvesting capital.

Chapter 2 presents expressions for single-period net benefits which

will be incorporated into the dynamic programming formulae of

Chapter 3. Rules are derived for setting the instruments at

approximately optimal levels when stock size at the beginning of a

period does not depend on the quantity harvested during the previous

period.

Chapter 3 presents the linear-quadratic multiple-period dynamic

programming model. Rules for setting instruments at their approximately

optimal levels when beginning-of-period stock size is dependent on

fishing in the previous period are derived. Expressions for expected

net present values under taxes and quotas are compared.

Chapter 4 presents a more plausible nonlinear model with

endogenous harvesting capital and describes the numerical dynamic

programming algorithm.

Chapter 5 presents estimates of the marginal benefit, marginal

fishing cost, and stock growth functions in the west coast pinkshrimp,

Pandalus jordani fishery. It also applies the numerical dynamic

programming algorithm explained in the previous chapter to the pink

shrimp fishery in an illustrative way, and presents the results, which

show that the two instruments would produce approximately equal

expected present values in this fishery.

Finally, the appendices show detailed derivations of some of the

equations presented in each chapter.
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DETERMINISTIC MODEL WITH CONSTANT INSTRUMENT LEVEL

When the frequency with which the regulating authority can change

the level of the chosen instrument in a dynamic setting is constrained,

one instrument may outperform the others, even in the deterministic

case. An example is production from a natural resource stock in which

extraction occurs continuously, at least over some time intervals, as

does natural growth of the stock. Unless the system is initially

already in the optimal steady state, the stock size will change,

continuously over time, which means that the level of the regulating

instrument must also change continuously over time if complete

optimality is to be achieved. (A quota must control the extraction

rate at every instant, and not just the cumulative quantity extracted

each period.) If, however, the level of the instrument can be reset

only at periodic intervals, different instruments will have different

effects on the time paths of all variables in the system and will

result in different expected present values of the stock.

Figure 1 illustrates the simplest case: perfectly elastic demand

and marginal harvest cost. In this case; the optimal management

program when the planning horizon is infinite calls for driving the

stock as rapidly as possible to a steady-state level (Clark 1973),

designated X*. This means that if the initial stock size is greater

than X*, maximum possible fishing effort should be applied to the

stock until it is reduced to X*, and if initial stock size is less than

X*, there should be no fishing at all until the stock grows to X*.

When the stock reaches X*, the optimal steady-state instantaneous

harvest rate is H*. This harvest rate can be achieved by imposing



10

Figure 1 .--Deterministic fishery with perfectly elastic
supply and demand.
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instantaneous harvest rate quotas. (In this context, "quotas" means a

system of individual firm quotas, because an aggregate industry quota

alone would result in excessive effort rate and dissipation of rents.)

This rate can also be achieved-by levying a per-unit tax equal

to C(X*), the marginal value of stock, or by employing some other

instrument. The first order equilibrium and optimum condition

describing an interior optimal steady state is P-G(X*) = MC(X*),

where P is the constant price of harvested fish, and MC is the

instantaneous marginal harvest cost, which is constant with respect to

harvest rate, but which rises with falling stock size (Herfindahl and

Kneese 1974).

Ideally, the regulating authority would vary the tax or quotas

through time until the stock size reaches X*. If, as depicted in

Figure 1, initial stock size, X0, is larger than X*, the optimal quota

program consists of no quotas at all until X* is reached, and then an

industry quota equal to H*. Similarly, a tax set equal to G(X(t))

would vary as stock size declined until the steady state was attained.

If one assumes that the level of the chosen instrument must be set

once and for all, and can never be reset, a constant industry quota

would not be able to drive the system along the fully optimal time

path. It will take longer for the system to reach steady state under

quotas. Morever, since the optimal level of the fixed quota is not H*,

the final steady-state values of all variables, including X, will

differ from those of the fully optimal solution. However, a fixed tax

equal to G(X*) will drive the system along the fully optimal time path.

As long as stock size is greater than X*, marginal harvest cost will be

lower than price minus the tax, and fishermen will voluntarily commit
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all, available effort to the fishery. When stock size equals X*, the

marginal cost curve coincides with P-T, and H* is the equilibrium

harvest rate. This argument for the superiority of a fixed tax over a

fixed industry quota follows symmetrical lines when initial stock size

is less than X*.

STOCHASTIC STEADY-STATE MODEL

A continuous-time dynamic model to which Pontryagin’s maximum

principle is applied is used to identify the relevant marginal benefit

and cost functions of fish production. Three restrictions are placed

on the continuous-time approach: 1) stochastic disturbances change

values only at the beginning of each time period, 2) instrument levels

are changed only at the beginning of each period, and 3) the optimal

and actual paths of all variables are assumed to reach the steady state

very quickly. More will be said about the latter restriction below.

First, a deterministic model is employed. (Uncertainty is

‘incorporated in a later section.) The objective is to maximize the

present value of the stream of net social benefits, defined as consumer

and producer surpluses, over time:

subject to the constraint that net stock growth rate equals natural

growth rate minus harvest rate:

In addition, the maximization is also -subject to the initial stock

and non-negativity constraints.
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In the above formulae,

Xt is the size of fish stock at time t,

Ht is the instantaneous rate of harvest,

B(H t) is the instantaneous total consumption benefit rate,

C(X t,H t) is the instantaneous total harvest cost rate,

r is the (constant) discount rate, and

F(X t) is the natural growth (surplus production) function,

A dot over a symbol indicates the derivative with respect to time of a

cumulative quantity or stock variable.

where BH() and CH() are the partial derivatives of total benefit and

total cost, respectively, with respect to harvest rate (i.e., marginal

benefit and marginal cost), and CX() and FX() are partial derivatives

with respect to stock size.

Assuming that the optimum time path rapidly leads to or approaches

a steady state, the analysis is confined to steady-state situations,

so set Gt = Xt = 0. The three equations can now be solved for optimal

steady-state values of H t, X t, and Gt.
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Recalling that Gt is defined as the marginal value of stock at time t,

assuming that an optimum harvesting strategy will be followed from then

on, one sees that equation 1.04 means the control variable, Ht, should

be selected so as to set the difference between marginal benefit and

marginal harvest cost equal to marginal stock value, given the values

of Xt and Gt inherited from the previous instant.

Stock size, X, is not .a control variable. However, since primary

interest is in the steady state to which the system is driven, one

can treat the problem as one of choosing the optimal steady-state stock

size. Seen from this perspective, equation 1.04 means that X should be

chosen so as to set the marginal value of stock equal to the marginal

cost of obtaining it. The term BH() - CH() is marginal stock cost, as

it is the rate at which profit must be foregone while the harvesting

rate is temporarily reduced by one unit-per period so that stock size

can be allowed to grow at the rate of one unit per period. Making use

of the steady-state condition, H = F(X), one finds that marginal

steady-state stock cost, MSC, is solely a function of X:

(1.06) MSC(X) = BH(F(X)) - CH(X,F(X)).

Equation 1.05 is derived by differentiating an expression‘

defining the present value of the net benefit stream when the optimal

time path for the control variable is assumed to be followed at every

instant. In solving the problem of which steady-state stock level to

choose, however, one can use the more easily understood concept of the

steady-state marginal stock value: the derivative with respect to X of

the present value of the (constant) consumer and producer surplus

stream to be yielded by any level of stock, if that level of stock were
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to be held constant forever. This steady-state marginal stock

benefit is:

optimal steady-state stock size, designated X*. The quantity T* is the

optimal per-unit tax to charge fishermen if the fleet is characterized

by competitive conditions so that the marginal harvest cost function,

CH(X,H), is the industry fish supply curve for given levels of X.

Since the fishing fleet will harvest at the rate at which marginal

harvest cost equals ex-vessel price less the tax, MSC(X) = BH(X) - CH(X)

is a tax response function. When per-unit tax T is specified, the

fleet will harvest, in a way which will drive the stock to the steady-

state level implied by T = HSC(X). The corresponding steady-state

harvest rate, H*, is found by examining the growth function, F(X),

shown in Figure 2 as having the well known "dome" shape. The quantity

XMSH is the stock size which produces maximum sustainable harvest.

In this deterministic model, the tax, quota, and other instruments

are equally efficient. The correct output rate, H*, and the correct. tax,

T*, which will elicit H* (when stock size reaches X*) are known.
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Figure 2.--Optimal steady state.
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Either instrument will drive the stock to X*, the correct level, as

long as initial stock size is to the right of XMsH.

A problem in both deterministic and stochastic steady-state models

is the inability of a quota to drive the stock to a desired equilibrium

level on the left side of the stock growth dome. Such an equilibrium

is unstable, as is shown in Figure 3. The quantity X* is the desired

equilibrium stock level and H*, the corresponding harvest rate. If

harvest is controlled by a quota set at H* and if initial stock is

greater than X*, the rate of natural growth of the stock, F(X), is

greater than H*, and stock grows to X'. If initial stock level is less

than X*, then F(X) is less than H*, so the stock is driven to the level

which it would reach in the absence of-regulation.

This means that if the desired stock level is on the left side of

the dome, a constant tax is superior to a constant quota, rather than

equally as efficient. In the stochastic case, the simplest way to deal

with the problem is to refuse to consider using a quota unless the

expected value of optimal equilibrium stock size resulting from the use

of a quota is “safely” to the right of XMsH. Of course, “safely” would

be arbitrarily defined. Another alternative is to account explicitly

for the probability of failure to reach desired stock level through use

of a quota and the attendant welfare loss.

Returning to general discussion of the deterministic model, one

notes that a change in one or more of the parameters of the system,

whether or not expected, results in a shifting of both MSB(X) and

MSC(X), and a new optimal steady-state stock size. The new value of X*

does not depend on whether or not the new parameter values are known

with certainty before the change occurs, although the course of the
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Figure 3 .--Instability of quota equilibrium on left side of yield dome.
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optimal transition path between the old X* and the new one does (Clark

and Munro 1975). In order to make the model stochastic, introduction

of random disturbances into some of the parameters, which change value

only at the beginning of each time period, is necessary. The

disturbances are thus the only discrete-time elements of an otherwise

continuous-time model. Assuming for the moment that the values taken

by the disturbances each period are known, one has a model in which the

parameters change every period, resulting in a full-information optimal

time path which leads to a new steady-state X* and corresponding

optimal tax and harvest rate quota. Such a path is illustrated in

Figure  4 . It is crucial to assume that the amount of time spent in

steady state during each period is great relative to the amount of time

spent in transition from the previous period’s steady state. This

allows focusing on the choice of regulatory instrument on the basis of

performance during the steady states.

where all the subscripted lower case Roman letters are known parameters

and u, v, and w are stochastic disturbances. Parameters b1, c1, and c2

are assumed to be non-negative. The disturbances are assumed to be

independently distributed, with expected values of zero and known

variances.
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Figure 4 .--Example of full-information optimal time path
of stock size.
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The problem facing the regulators is that they must decide which

instrument to use, and at what level to set it, before they know the

values of u, v, and w, all of which are determinants of the full-

information optimum levels.

Figure 5. For diagrammatic

disturbances are assumed to

This uncertainty is depicted in

simplicity, the distributions of the

consist of only two possible values for

each of u, v, and w, with each value having a-probability of occurring

of 0.5. There are two possible states of the world.- If state 1 occurs,

MSB1 and MSC1 are the true positions of marginal-stock benefit and cost

because disturbance values are u1, v1, and w1. The position of the

growth function in state 1, when w = w1, is F1(). Analogous statements

apply to MSB2, MSC2, and F2(). The quantities Xi*, Ti*, and Hi* are,

respectively, the full-information optimal values of stock size,

specific tax, and, harvest rate, if state i occurs. The quantity T" is

the level of the tax which would actually be imposed, resulting in a

stock level of either X1” or X2". The quantity Q1 is level of the,

quota which would actually be imposed, resulting in either X1' or X2'.

The triangles shaded with vertical lines represent welfare loss which

would be incurred in each state of the world if T” is imposed, and the

triangles shaded with horizontal lines are welfare loss under a quota

of Q’.

The regulators face two decisions: which instrument to employ, and

at what level to set the chosen instrument. The latter is easily

dispensed with, for if growth and marginal cost and benefit are linear

with parallel shifting, setting the chosen instrument at the expected

value of its optimal level will result in the minimum expected value of

welfare loss.
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Figure 5 .--Expected welfare losses under tax and quota.
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Given that the instrument selected will be set at its optimal

level, the question of which instrument gives the lowest expected

welfare loss is raised. That question is answered by developing

explicit expressions for the expected welfare loss with each

instrument. The expected welfare loss with the quota, WL', is

where E[] is the expectation operator. This is simply the expected

value of the area of the welfare loss triangle exemplified in Figure 5.

Similarly,., the expected welfare loss with the specific tax is:

The disturbances in equations 1.11 and 1.12 have been suppressed in the

interest of simplicity.

Before proceeding, one must write explicit expressions for MSB and
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Following the same process with MSB yields:

Some of the terms in equations 1.11 and 1.12 can now be described

more fully.

The full-information optimal stock level, X*, is found by equating

MSC with MSB:
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Solving for X"’ gives:

Finally, X’, the level to which stock is driven when the quota is

imposed, is found by writing the steady state condition:,

Substituting equations 1.14, 1.16, 1.18, and 1.24 into

equation 1.11, multiplying through, and taking expectations gives

Recalling that B and D are the slopes of marginal steady-state

stock cost and benefit, respectively (see equations 1.14 and 1.16), and

that x and n are their disturbances, it can be easily shown that the

first two terms of equation 1.27 are identical to Weitzman’s

coefficient ‘of comparative advantage of prices over quantities (when
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marginal benefit and marginal cost are correlated). This is because

levying a specific tax on harvested fish is equivalent to controlling

the price received by fish stock owners (the public) for holding stock.

The remaining tens in equation 1.27 represent the effect of

uncertainty about the stock growth function and therefore about the

relationship between harvest rate and equilibrium stock level.

Now in order to write the CCA in terms of the original parameters

of the model., substitute from equations 1.14 and 1.16 into

equation 1.27 to obtain:

The first term in brackets [] is positive, but the second term in

brackets []. cannot be signed without the parameter values of a

specific fishery, even when ex-vessel price and marginal harvest cost

are constant, i.e., when b1 = c1 = 0. Therefore, the sign of the CCA,

and hence, the ranking of the tax and quota instruments, depends on the

fishery in question. Note, however, that if the growth function is not

stochastic (d w
2 = 0), the CCA is clearly positive, and the tax is always

preferred.. This is not surprising, because x and n are negatively

correlated when w is known to be zero, and as Weitzman shows, negative

correlation between marginal benefit and marginal cost increases the

relative attractiveness of price regulation, other things being equal.
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This is because fluctuations of the marginal benefit and Cost curves in

opposite directions cause greater variation in the full-information

optimal output rate, and. a fixed price allows the realized output rate

to fluctuate in the same direction, thereby remaining relatively close

to the full-information optimum.
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CHAPTER. 2

LINEAR MODEL: SINGLE-PERIOD NET BENEFIT

INTRODUCTION

In this and the following chapters, the steady-state assumption is

discarded. In this chapter, expressions for net benefit accumulated

during the course of each single period under tax and quota systems in

a linear model are derived. These expressions will be incorporated

into the dynamic programming analysis of optimal instrument choice in

the next chapter. Rules for finding approximately optimal levels of

each instrument when the stock size at the beginning of a period is

independent of harvest in the previous period are also obtained in this

chapter, and expected net benefit expressions for each system are

compared. Neither instrument can be shown to be consistently superior.

The model used in the analysis is constructed first under the

assumption that the level of capital is exogenously fixed. Then the

model is reconstructed under the alternative assumption that capital is

endogenous, with fishermen choosing the level of capital each year on

the basis of expected profit over the coming season. Expressions for

predicted fleet size, optimal tax level, and expected present value of’

the single-period fishery are not presented for tax regulation because

they are impossible to derive when endogenous capital enters the

marginal harvest cost curve in the particular manner chosen in this

chapter. This specification of the marginal-cost-with-capital curve

was chosen because, for quota regulation, it allows retention of the’
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linear-quadratic dynamic. programming formulation needed for the

analysis in Chapter 3. While it is possible to alter the model in a

way that permits derivation of the single-period expressions for tax

regulation, there is no way to construct the model which will permit

retention of the linear-quadratic formulation for tax regulation when

capital is endogenous.

SOME NOTATION

“The following notation list revises and expands that of the

previous chapter:

r is the (constant) discount rate.

k is the instrument index: k = 1 for quota, 2 for tax, and so on for

any other instruments which might be considered.

i is the period index. It is time measured discretely.

t is time measured continuously. t runs from i-l to i during

period i.

function of stock size at the beginning of the period (when

t = i-l), which is X i-1 , and of the level of instrument k in

period i. It is a stochastic function of the growth disturbance,

wi, (with wi assuming a new unknown value at the beginning of each

period), and of the benefit and cost disturbances, u i and v i,

through their effect on the equilibrium harvest rate. The
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subscript k indicates that the form of the function is different

for each type of instrument.

x0
is the stock size at t = 0, i.e., initial stock size in period 1.

Ht
is the equilibrium instantaneous rate of harvesting at instant t.

At each instant, Ht is determined by equating marginal benefit

(demand) and marginal harvest cost (supply) plus tax, or else it 

is fixed by quota. Optimal quotas are assumed to be binding,

although occasionally equilibrium harvest rate may be lower than

the aggregate fleet quota. This may occur when demand is

unexpectedly low, harvest cost is unexpectedly high, and stock

growth rate is unexpectedly low. It is especially likely at the

end of the season, when stock size may become low.

B(Ht,ui) is the instantaneous rate of accrual, of total consumption

benefit during period i, a function of instantaneous harvest rate

(the entire harvest is assumed to be purchased, with no dead loss,

and with net additions to inventory assumed to confer the same

benefit as consumption). A stochastic disturbance, u i, shifts the

function at the beginning of each period.

C(X t,H t,vi) is the instantaneous rate of total harvest cost incurrence

during period i. It is a function of both harvest rate and

stock size, and is shifted each period by a stochastic

disturbance, vi.

is the present value of net benefit which

accrues over the course of period i (the single-period net benefit

function), and is equal to
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It is a function of beginning-of-season stock size, instrument

level, and growth disturbance because of the effect each has on

stock size and equilibrium harvest rate.

MODEL

The three basic functions of the model are repeated here from

where F(X) is the natural stock growth function, ui and vi are

stochastic disturbances, and subscripted lowercase Roman letters are

fixed, known. parameters. Parameters bl, cl, and c2 are assumed to be

non-negative. All the other parameters may be positive, negative, or

z e r o .  

No stochastic disturbance is shown in the stock growth function

because it is used only to derive the stock size functions

The disturbance in the stock size functions is assumed to have the

same distribution for all the functions X k(), i.e., for all regulatory

instruments. All disturbances in the system are assumed to have

expected values of zero, to be serially uncorrelated and uncorrelated

with each other, and to have known variances.
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QUOTA REGULATION

Under a quota system (k = 1), the level of the instrument, Z li, is

Qi . For notational convenience, the following discussion will refer to

the first period, in which i = 1 and t goes from 0 to 1, but all

expressions are identical in every period. Moreover, the period

subscript i = 1 will be omitted from Q and from the disturbances.

The expected present value of instantaneous net benefit

accumulated during the first period (discounted to time t = 0) is

where z is the time at which the fishing season closes, perhaps by

decree, e.g., for the protection of gravid females, or perhaps by

natural event, such as the onset of winter weather or the annual

departure of the fish. The parameter z can take any value between zero

and one. The open season and the period both begin at time t = 0.

Instantaneous harvest rate, H t, is fixed at the level of the aggregate

quota, Q.
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Substituting this expression for X t into equation 2.04, and

rearranging, integrating, and taking expectations gives

In some fisheries, fishing during the current period may have

no effect on the size of the fish stock at the beginning of the

following period. This could occur if the number of eggs laid each

year at spawning time is independent of stock size. Fishing always,

however, affects the stock size at each instant during the open season,

as described by equation 2.06. Then the objective of the regulating

authority, after observing the stock size at the beginning of each

period, is to set the quota at Q*, the level which maximizes

E[R1(X0,Q)]. (Risk neutrality on the part of the authority is assumed,

since the variance of R1(Xo,Q) is proportional to Q.) To find Q*,

one differentiates E[R1()] with respect to Q and sets it equal to

zero:

The term -2L is the slope of the cumulative net marginal benefit of

harvest curve, given the assumption of constant harvest rate throughout

the season. Similarly, W + YXo is the interceptof the cumulative net

marginal benefit curve. Setting equation 2.08 equal to zero is
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equivalent to equating cumulative marginal benefit of harvest with

cumulative marginal cost.

Substituting Q* into equation 2.07 gives the maximum possible

expected present value to be obtained by an optimal quota during the

current period:

The second order condition for a maximum to exist is -2L < 0, or

L > 0. On examination of the expression for L in equation 2.07, it can

be seen that this condition does hold for all values of fl, the

negative of the slope of the stock growth function, given the

assumption of non-negative values for all other parameters, and

provided that the effect of stock size on fishing cost, c2, is not

zero.

The term Y is unambiguously non-negative. However, W could take

either sign, giving rise to the possibility that the optimal quota,

could be negative; This would be the case when fishing is

prohibitively expensive at small stock sizes (i.e., b 0-c 0 is highly 

negative), and when initial stock size is low. A negative quota might

actually be achieved in some fisheries by stocking.

Variances of the stochastic disturbances do not appear in the

decision rule for setting the quota, and the disturbances themselves

have been replaced by their expected values (namely zero). If quota

regulation is chosen, the fishery can be managed as if the disturbances
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were known to be equal to zero. The assumption of risk neutrality is

required for this conclusion.

Also, when stock size has no effect on fishing costs (c2 = 0), the

optimal quota is equal to the harvest rate that would result if the

fleet were allowed to fish without regulation. The optimal quota in

t h i s  c a s e  i s

provided that natural stock growth can be fast enough to produce this

yield rate until the end of the planning horizon without extinction of

the stock (Levhari, et al. 1981). This is also the expected harvest

rate obtained by equating marginal benefit (demand) with marginal

harvest cost (supply) when, c2 = 0, provided that b0 - c0 is positive,

that b l and c l are not both zero, and that, if c l = 0, storage costs

are not zero.

TAX REGULATION

Under a-per-unit tax system (k = 2), the level of the instrument in

period i, Z 2i,  is T i. The discussion in this section will again refer

to the first period for notational convenience, and the period

subscript, i = 1, will again be omitted.

The expected present value of net benefits accumulated in the

f i r s t  p e r i o d  i s



where Xt is a function of T-and Ht is a function of Xt and T, as is

shown below.

Instantaneous harvest rate is determined by equating the demand

function with the marginal harvest cost function plus tax and solving

for equilibrium harvest rate:

where a prime (') after a character not designating a function or a

variable indicates that the character represents a term in a tax system

expression having a counterpart in a quota system expression. (Absence

of a prime does not necessarily indicate that the character represents
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a quota system term.) The following additional notation is used in

equation 2.15:

If the size of the stock at the beginning of the next period is

independent of fishing during the current period, the maximization

problem has a one-period planning horizon. The objective of the

regulating authority is to select the level of T which maximizes

E[R2(X0,T)]; this is accomplished by differentiating E[R()] with
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respect to T and setting the derivative equal to zero:

The second order condition for a maximum in T to exist is

-2L’ < 0, which in turn requires that L’ be positive. Examination of

the expression for L’ above shows that L ’ is unambiguously positive as

long as C2, the effect of stock size on costs, is greater than zero,

and as long as fl, the negative of the slope of the stock growth

function, is greater than or equal to -c 2/(b l+C1). This condition

assures that F is non-negative. When fl < -c2/(b2+c1), however, the

sign of L’ can not be determined, i.e., it is impossible to solve for

the negative value of f l, if one exists, at which L’ becomes negative.

The term W' appears to be impossible to sign, but it could never

be sufficiently negative to imply a negative optimal tax, a subsidy to

fishermen. This is because unregulated equilibrium effort and harvest

rates are always greater than optimal effort and harvest rates, and

must always be restrained rather than encouraged. If, however, the

effect of changing stock size on fishing costs is negligible (c2 = 0),

both W' and Y’ are zero, and therefore, so is the optimal tax. No

regulation is necessary if the stock is capable of growing rapidly
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enough to support the untaxed market equilibrium harvest rate.

continuously until the end of the planning interval without extinction

of the stock.

The variances of the stochastic disturbances do not appear in the

expression for the optimal tax. This means that, as in the case of a

quota system, the stochastic fishery can be managed simply as if the

disturbances were known to be equal to their expected values, as long

as risk neutrality is assumed.

TAX VERSUS QUOTA REGULATION WITH A ONE-PERIOD PLANNING HORIZON

Continuing. for the time being the assumption that stock size at

the beginning of the next period is independent of fishing in the

current period, one can then make the choice between tax and quota

systems. This is done by comparing the two on the basis of expected

present value of net benefits to be accrued over the course of the

upcoming season, given the size of the fish stock at the beginning of

the season. The “coefficient of comparative advantage of tax

over quota," the CCA, can be defined as

In general, there can be no presumption about the sign of the CCA,

because the sign depends on X0 (although it is possible that the sign

could be the same for all X0 in the relevant range). The sign of

I + JXo + RX0 must be positive, since this expression can be shown to
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be the integral over time of a discounted squared quantity.  Thus, if

there were conditions under which it could be shown that                 

is always larger than           then the superiority of the tax

would be guaranteed under those conditions. However, no such

conditions can be readily identified.

Expression 2.19 is quadratic in X0. Written in standard

quadratic form, it is

If all three coefficients of this quadratic were of the same sign, the

CCA would also have the same sign for all positive X0. However, signs

cannot be determined without specific values for the parameters of the

m o d e l .

QUOTA WITH CAPITAL ENDOGENOUS

All analysis thus far has treated capital as being exogenously

fixed. Now an alternative approach will be taken, with the level of, 

capital being selected by the fleet at the beginning of each season,

using knowledge of the stock size at the beginning of the season and of

the level of the quota to be set by the authority for the upcoming

season. Capital is then assumed to be fixed during the season.

This approach requires the assumption that the level of capital

can be varied instantaneously at the beginning of the season, as soon

as initial stock size and the quota level are known. Charles (1983a)

described an alternative model in which the decision on investment

for the current season is made in the previous period, based- on
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knowledge of escapement at the end of the open fishing season. Both

the model discussed here and the one constructed by Charles require the

assumption that investors consider only their expected profits for the

immediate season, and not for seasons farther in the future. For

simplicity, processing capital is assumed to be exogenously fixed, as

b e f o r e .  

Before proceeding, one should consider the production functions of

harvesting and processing. In general terms, the output of processed

fish is a function of two inputs, unprocessed fish and a composite

input similar to fishing effort, which will be-called processing

effort . The processing production function is assumed to embody a

fixed ratio between unprocessed fish and processed fish. Thus, the

derived marginal benefit accruing to processors who buy fish from

fishermen is found by simply subtracting the marginal cost of producing

processing effort from the marginal benefit accruing to buyers of

processed fish (who are assumed to be the final consumers>.

One can assume that harvesting and processing capital are fixed

during the season, and can only be varied between seasons.. Hence, due

to the short run, fixity of capital, short run marginal cost is

positively sloped, and short term rents, or producer surplus, can

accrue to the fixed capital in both harvesting and processing sectors,

even if long run marginal and average costs are constant.

Figure 6 illustrates these concepts. The diagram represents

the situation at a single instant in time. The line labeled MB is

marginal benefit to consumers, and MCp is instantaneous marginal

processing cost, exclusive of the cost of purchasing unprocessed fish

from fishermen. Thus, MB - MCp is derived demand by processors for
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Figure 6 .--Consumer surplus, produce? surplus, and rent to fishery.
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unprocessed fish. It is more steeply sloped than the marginal benefit

curve because MCp rises with harvest rate. The position of the marginal

processing cost curve, and therefore the distance between MB and

MB - MCp, is determined by the quantity of processing ‘capital which is

fixed during the season. (One should keep in mind that MCp is marginal

variable cost.) 

The position of marginal (variable) harvesting cost (MCH) at each

instant is determined by the stock size at that instant and by the

quantity of fishing capital, which is fixed during the season.

The quantity H is the instantaneous harvest rate that results from

regulation, either by quota or by tax. The resulting charges are the

the processors' output price, Py; the gross ex-vessel price, PC (the

amount paid by processors for unprocessed fish);’ and the net ex-vessel

price, PN (the amount received by fishermen after paying the tax or

buying quota rights to catch another pound of fish).

The area shaded with vertical lines represents the instantaneous

accrual rate of the sum of consumer surplus and processors’ gross

producer surplus, or gross rents to fixed processing capital. The term

“gross” applies to the producer surplus because fixed cost has not been

subtracted from it. Consumer surplus can also be measured separately

as the area between the MB curve and the processor price, Py: The area

shaded with horizontal lines represents instantaneous rate -of gross

producer surplus accrual to fishermen, or gross rents to fixed

harvesting capital. The unshaded rectangle between gross ex-

vessel pride and net ex-vessel price is rent to the fishery, which may

be transferred to the regulating authority in the form of revenue from



taxes or the sale of quotas, or may accrue to the owners of quotas, if

quotas are granted free of charge to selected fishermen.

Under a system in which shares of the aggregate instantaneous

harvest rate quota are allocated to specific firms, each firm will

choose-its level of capital for the upcoming season so as to minimize

the expected present value of the cost of harvesting at the assigned

rate all season. The fleet will, choose the level of capital which

minimizes

This is similar to equation 2.02, with the exception that the slope

parameter, c l, is now divided by the quantity of capital, K, available

during the season. Fixed cost, FC(K), is the instantaneous cost rate

of holding capital, and is equal to (m+d)K, where d is the depreciation

rate, and the units of capital are defined so that the purchase price

of capital is one dollar.

If equation 2.22 and (m+d)K are substituted into equation 2.21

(with Q substituted for Ht), then differentiating with respect to K and

setting the result equal to zero yields
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The (fixed) cost of holding capital is assumed- to be borne only

during the fishing season, and not during the closed season. This

assumption makes the algebra simpler, but can be easily discarded

by multiplying the expression for equilibrium capital level by

(e-mz -1) / ( e m-1), which gives equilibrium K when capital must be held

for a full year.

Having determined the equilibrium level of capital chosen by

fishermen in response to the announcement of the upcoming season's

aggregate quota level, one is now in a position to derive the optimal

rule for setting the quota level. The first step in this process is to

derive an expression for single-period net benefit. This is defined-as

total consumer benefit minus harvesting and processing costs:
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Substituting equation 2.25 for equilibrium K and taking

The optimal level of the aggregate quota when fishing in the

current period does not affect stock size in the following period is

found by differentiating E[R1(X0,Q)] with respect to Q, setting the

result equal to zero, and solving for Q* :

These expressions are very similar to the corresponding

expressions derived earlier in this chapter for the model with capital

assumed to be exogenously fixed. The expression designated L” is

identical to L except that the second term in L" does not contain c1.

The expression designated W' is identical to W, except that the first

term in W does not contain -(2c1(m+d))1/2. Thus, both W" and L” are

smaller than their counterparts in the exogenous capital-version of the

model, and it is impossible to say whether the quota would be set too

high or too low if capital were incorrectly assumed to be exogenous.
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CHAPTER 3

LINEAR MODEL: ANALYTICAL DYNAMIC PROGRAMMING

INTRODUCTION

In this chapter, the assumption that stock size at the beginning

of any period is independent of the quantity harvested during the

previous period is discarded. Dynamic programming is employed to

derive rules for setting quota and tax instruments at their optimal

levels; and the, expected present values of net benefits produced by

each instrument over multiple periods, are- compared.

DYNAMIC PROGRAMMING FORMULATION

The following discussion draws extensively on Koenig’s exposition

(1984). One can assume that the fishery managing authority has

committed to a regulatory strategy at the beginning of the first

(current) period which will be adhered to from now until the terminal

period, period i. (The-value of i will be set later at infinity.) The

objective of the authority is to select the optimal instrument and the

time path of the chosen instrument which maximizes the expected present

value of the stream of single-period net benefits produced:

where i is the terminal period, p is the nonstochastic discount

factor, and all other notation is as described in the previous chapter.
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The second of these two tasks must be performed first, and must be

performed for every instrument under consideration, because only after

optimal time paths for every instrument have been found can the

expected present value of net benefits generated by each be computed

and compared.

When the fishery system is stochastic, the optimal time paths

of a regulatory instrument and other system variables cannot be

specified fully in advance. Given that the level of the instrument in

each period need not be set until the beginning of the period, a rule

is derived which specifies the instrument level on the basis of

information available at that time. Some of that information becomes

available only at the beginning of the period, e.g., beginning-of-

period stock size.

There is a distinction which should be made clear. The chosen

instrument will be reset each period, using knowledge of the stock size

at the beginning of the period. However, the choice between

instruments is to be made only once, at the beginning of the first

period. Which instrument is chosen will depend on stock size at the

beginning of the first period.

Following standard dynamic programming procedure, it isassumed

that the rule for setting the instrument at the optimal level in all

periods, beginning with period i, has already been determined. The

expression Vki(X i-1 ) can represent the expectation, as of period 1, of

the maximum possible present value, as of period i, of net benefits

that can be obtained by setting instrument k optimally in, every period

from period i onward. This is a function of the size of the stock at

the beginning of period i, X i-1. The function V(X) can be written in
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the following recursive relationship in which the instrument subscript

k has been suppressed:

This equation reduces the complex problem of determining the

entire optimal time path of the control variable, Z, to the easier

problem of determining the optimal value of Z during period i only.

It expresses the expected present value of benefits to be obtained by

beginning an optimal management program during the period i as the

maximum of the sum of benefits in period i plus the expected present

value of benefits to be obtained by beginning an optimal program during

the next period, discounted to period i. In other words, one must find

the optimal value of Zi, knowing that the setting of Z will affect the

stock size available at the beginning of the following period, given

that future Z’s will be chosen optimally for whatever period i+1

initial stock size is.

In general, the functional form of V i+1  i(X) is unknown, but in the

special case of a single-period net benefit function that is quadratic

in both control and stock variables, and of a stock size function which

is linear in both types of variables, the functional form is known to

be quadratic (Chow 1975). Thus, for each instrument,
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Moreover, it follows from equation 3.02 that

where i has been omitted from s0 s l,  and s2- This equation permits

the derivation of relationships between s(i) and s(i+l), as will be

demonstrated below.

QUOTA  REGULATION

In many fisheries, fishing does not proceed year round, but is

subject to a closed season. Fishing may be halted each year by

regulations designed, for example, to protect gravid females, or by

natural events such as the annual departure of the fish or the onset of

winter weather. The period can be divided into two seasons: the first

season open for fishing, and the second season closed. The open

season, of length z, begins at the same time the period begins, when

t = i-1, and ends at t = i-l + z; while the closed season, of length

l-z, begins at t = i-l + z and ends when the period ends, at t = i.

Then the size of the stock at the end of the fishing season in the

first period is found by substituting z for t in equation 2.06, derived

in the previous chapter:

The size of the stock at the end of the closed season, which is also

the end of period 1 (the beginning of period 2) is found by

substituting Xz for X0 and l-z for t in equation 2.06 and setting
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Q = 0. After substituting equation 3.05 for Xz and rearranging, ‘one

gets

The quantities M, N, and P are non-negative for all values of f1.
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Differentiating the terms in brackets [] with respect to Q, setting the

resulting derivative equal to zero, and solving for the optimal quota,

defined, the second order condition -2V < 0, or V > 0 (where the symbol

“V" without subscript or parentheses is defined as above, and does not

refer to the function Vi(X)), must be met. Making use of this

condition and of the fact that s2(i+l) = 0, one can see from

equation 3.13 that s2 is non-negative for all i < i. If V < 0, then

which is sufficient to quarantee non-negative s2,

since p, L, and N are all non-negative.
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Figure 7 displays the behavior of equation equation 3.13. The

value of s2(i) can be determined at any i by beginning at i+l, when s2

is known to be zero, and working backward in time, recursively applying

equation 3.13.

Since the terminal date would usually be specified as infinity, it

is essential to determine what happens to s2 as i grows large, or

equivalently, what happens as the time interval traversed backward

from i grows large. The process can be viewed in Figure 7 as one in

which s2,(i) begins at the point where equation 3.13 intersects the

vertical axis, and moves upward along the curve as i retrogresses from

i toward the present. Whether or not s2 converges to a stable steady-

state value, s 2, depends on whether or not the curve twice intersects

the 45° identity line representing the function s2(i) = s2(i+l) and

having a slope of one.

Intersection is guaranteed if the point of tangency between a ray

from the origin and equation 3.13 is below the identity line. This

point is found by equating s2(i)/s 2(i+l) with ds 2(i)/ds 2(i+l), and

solving for the value of s2(i+l) at which the-tangency occurs. The

solution is s2(i+l) = Y/2pNP. The slope of both the ray and s,(i) at

this point is pP2, and the necessary and sufficient condition for the

existence of a stable s2 is that it be less than one;

The interseason discount factor, p, is defined as e -r, rather

than l/(l+r), so as to be consistent with the intraseason discount

factor, and so as to make algebraic operations easier. Therefore,

implies that f i > -r/2, where f1 is the negative of the slope of F(X),
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Figure 7 .--Phase diagram for equation 3.13.
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the natural stock growth function. This-is similar to the condition

necessary for convergence of s2 in Koenig’s discrete-time model, which

Condition 3.14 means that when the slope of the growth function

(-f,) is any more than slightly positive, no stable steady-state value

of s 2 exists. As the terminal date grows more distant from the

present, s2 increases without bound, eventually exceeding L/pN2. An

analytical rule for settling a quota at the optimal level cannot be

obtained by the method described in this chapter, because no maximum

exists in Q. This inconvenient result can be attributed to the use

of linear approximation to a dome-shaped growth curve. I f  t h e  s l o p e

of the growth function truly were a positive constant the stock could

grow without bound, and if it did so at a sufficiently rapid rate (f1

larger than half the interest rate), it would pay to refrain from

harvesting for an indefinite period of time, or better yet, to add fish

to the stock as rapidly as possible. The expected net present value

of the stock, V(X0), is a quadratic function of stock size, with the

coefficient of X (s2) being positive. Therefore, the value of the

stock must eventually begin to rise as stock size increases. Moreover,

the value rises at an an ever-increasing absolute rate. With stock

size itself growing at an ever-increasing absolute rate over time, the

combined effect is a relative rate of growth in value of the stock over

time which exceeds the interest rate, thus making abstinence from

fishing optimal..
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When stock size is low, i.e., on the left side of the growth dome,

and linear approximation to the dome results in failure to meet the

necessary condition for convergence of s2, useful analytical results

cannot be obtained, even by a method, such as approximation of the

present value function, in which convergence is assumed. Numerical

methods applied to a model with a nonlinear growth function must be

u s e d .  

If condition 3.14 is not met, it may still be possible to solve.

equation 3.13 for a steady-state value of s2, but this value could only

be negative. Since s2(i+l) has been shown to be positive for all i, s2

could never actually attain such a steady state.

It is obvious from Figure 7 that if convergence does occur then

s2 meets the condition

Steady-state values of s 0, s l, and s2 are found by, replacing both

s(i) and s(i+l) with s in equations 3.11, 3.12, and 3.13, respectively,

and solving for s. Since equation 3.13 is quadratic in s, there are,

two solutions, but Figure 7 makes it clear that only the lower one is

stable, and is the one to which s2 will actually tend. The stable

steady-state value of s 2 is
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the absolute value of the slope of equation 3.12 is less than ‘one, that

The term -ps1N is contained in E, and becomes negatively infinite when

s1 fails to converge, thereby overwhelming the finite positive terms in

Q*. Thus, the quota should be set as low as is physically possible;
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i.e., it should be zero, at most. Here again, this conclusion should

be rejected, and an alternative analytical method or numerical methods

should be employed.

There can be no guarantee that s1 > 0 or so > 0, although if s1 is

non-negative, then so must also be non-negative.

Again, as in the single-period optimization case, the variances of

the disturbances do not appear in equation 3.09, the expression for Q*.

The quota fishery can be managed as if there were no uncertainty.

Also, while U and V must be positive (condition 3.15 assures that U is

positive) if the problem is to be well defined, E may be sufficiently

negative to require a negative optimal quota.

The definitions of E, U, and V reveal that the expression for

optimal quota level in the multiple-period case, which is
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is similar to the expression for optimal quota. in the single-period

case, which is

The terms E, U, and V contain W, Y, and L, respectively. The

difference is that new terms have been subtracted from W, Y, and L in

the multiple-period expression. All of these new terms are positive,

except ps1N, which is one of two terms subtracted from W, and whose

sign is unknown, due to the presence of s1. Since the denominator is

smaller in the multiple-period expression for Q* than in the single

period case, and the numerator may actually be larger if ps1N is

strongly negative, it seems impossible to conclude that the optimal

quota is smaller when current harvest affects stock size in the

following period as one would expect.

However, it also appears that unless ps1N is strongly negative,

the optimal quota in the multiple-period case is more likely to be

negative than in the single-period case. This is because although V is

positive, it is smaller than L, and because it is no longer necessary

that W be negative for this result to occur.

TAX REGULATION

Stock size at the end of the open season in the first period when

the tax is set at T is found by substituting z for t in equation 2.14,

derived in the previous chapter:

where the period subscript i=1 has been again omitted. Stock size at
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the end of the closed season (the beginning of the next period) is

found by substituting Xz for X0 and l-z for t in equation 2.14 and

setting Q equal to zero (no harvest). After substituting equation 3.20

where a prime after a symbol indicates that the symbol refers to a term

in a tax system expression which has a counterpart in the corresponding

quota system expression. All of the above defined terms are non-

negative, with the possible exception of M’, which could be negative

only if fishing were highly profitable at very low stock levels (b0-c0

highly positive, which would make A sufficiently positive).

Substituting expression 2.15 from the previous chapter for
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Rearranging and taking expectations yields

After collecting terms containing X0 and Xo
2 and recalling the

relationship between V21(Xo) and V22(X1) in equation 3.04, one

can derive the relationships between s’(l) and s’(2), which are also
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the general relationships between s’(i) and s’(i+l):

defined, the second order condition -2V’ < 0, or V’ > 0, must be met.

Making use of this condition and of the fact that s2’(i+1) = 0, it can

be seen from equation 3.28 that s2’ is non-negative for all i ? ? i.

(The term R must be non-negative for this result to hold unambiguously,

and examination of the definition of R in the previous chapter shows

this to be the-case.) If V’ ? ? 0, then s 2’(i+l) ? ? L’/pN2, which is.

sufficient to assure non-negative s2’, provided that L’ is non-

negative. The term L’ is guaranteed to be non-negative when 

                       and may be non-negative for other values of f1.

If L’ is negative, the maximization problem cannot be well

defined, because the second order condition V’ > 0 implies that s2 is

non-negative, but if s2 > 0 and L’, which is a component of V’, is

negative, V’ cannot be positive.

Figure 8 displays the behavior of equation 3.28. The necessary

and sufficient condition for convergence to a stable steady-state

value, s 2’, is difficult to derive, requiring solution of a third
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Figure 8. Phase diagram for equation 3.28.
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degree polynomial in s2’(i+l). However, insight can be gained by

observing that the point of

from the origin takes place

the curve is at a minimum.

tangency between equation 3.28 and a ray

at the point where the slope of a ray to

The slope of this ray is

The minimum value of this expression must be less than one for

convergence. Since the first

are non-negative, it is clear

be less than one if the third

two of the three terms on the right side

that the sum of all three terms could not
2term, pP’ , were greater than one. Thus,

2it is necessary, but not sufficient, that pP’ < 1, which implies

f1 > -r/2. The sufficient condition is that f1 be greater, than some

value greater than -r/2, which is more limiting than the sufficient

condition for convergence of s2 in the quota case.

If convergence of s2 ’ fails, there will be no maximum of the

present value in T, and the optimum tax is one which is high enough to

prevent all fishing.

If convergence does occur, falls  into the following range:

The right-most term is the value s2f(i+l) at which the slope of

equation 3.28 is one and, therefore, overstates the maximum possible

value of s2’. It proved to be too difficult to solve for the value of

s2’(i+1) at which a ray from the origin is tangent to the curve.
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The-actual value of the stable steady-state s2’ is
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p < 1, which

steady-state

will occur if the discount rate r is positive. The actual

There can be no guarantee that either s1’ or so’ is non-negative,

but if s1 is non-negative, then so’ is also non-negative,.

As before, the variances of the disturbances do not appear in the

expression for the optimal tax, equation 3.24. The tax regulated

fishery may be managed as if there were no uncertainty. Also, while U’

and V’ are positive in a well defined problem, E’ may be negative,

although one would not expect it to be sufficently negative to require

a negative tax. Optimal management always calls for restraint of the

unregulated effort

costs.

Comparison of

period case, which

level, except when stock size has no effect on

the expressions for optimal tax level in the single-

is

and in the multiple-period case, which is

reveals similarities, because E’ contains W’, U’ contains Y’, and V’

contains L’. The difference is that in the multiple-period expression,

a new, non-negative term has been subtracted from the denominator, and

new terms have been added to the numerator, most of which are non-
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negative. Therefore, unless the one new numerator term which may be

negative, ps1‘N’, is strongly negative, the optimal tax is higher in

the multiple-period case than in the single-period case, as expected.

TAX REGULATION VERSUS QUOTA REGULATION

The coefficient of comparative advantage (CCA) of tax versus quota

is the difference between the expected present value obtainable under

tax regulation and expected present value obtainable under quota

regulation:

Writing the V(Xo)‘s in their quadratic forms and combining terms gives

Unless all three of the coefficients of this quadratic expression have

the same sign,. the’ sign of the CCA depends on X0 (although it is

possible that the sign could be the same for all X 0 in the relevant

range). Since no presumption can be made about the sign of any of the

three coefficients, the choice between instruments must be made on a

fishery-by-fishery basis.

There are at least two interesting points ofcomparison with

Koenig’s model and results to be made. First, so and so’ are both

functions of the variance of the stock growth disturbance, whereas the

growth disturbance is irrelevant to the choice of instrument in

Koenig’s analysis. The reason for this result of Koenig’s strictly

discrete-time approach is that the growth disturbance does not enter

the expressions for single-period (current) benefits and costs, but

enters only into future net benefits foregone by affecting the size of



68

the stock at the beginning of the next period. Thus, it enters only

into the marginal external cost function. In applying Weitzman’s

analysis of instrument choice, one can Subtract marginal external cost

from marginal benefit to obtain a partial net marginal benefit

function. The slope of this net marginal benefit function can then be

used in place of gross marginal benefit in computing expected welfare

losses with Weitzman's formulae. And, as Weitzman makes clear, unless

the disturbance in marginal benefit is correlated with the disturbance

in marginal private cost, the variance of the former has no bearing on

the comparison of instruments, unless consumers, rather than producers,

decide how much is to be produced.

However, in the present combination discrete-time/continuous-

time model, in which fishing and natural stock growth occur.

simultaneously over the course of the fishing season, the growth rate

disturbance enters both marginal external cost through its effect on

stock size, at the beginning of the next period and current marginal

fishing cost. Thus, marginal external cost is correlated with marginal

p r i v a t e  c o s t .

Second, Koenig’s model is more helpful in that it neatly lends

itself to interpretation in terms of the same intuitive concepts needed

to understand Weitzman's analysis: slope and variance of marginal

benefit and harvest cost curves and welfare loss triangles. This

is achieved by designing the fishery in such a way that marginal

harvest cost each period depends only on the, cumulative catch during

the period. Optimal management requires knowing only ‘how cumulative

catch is affected by the different instruments;
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In the present model, marginal harvest cost each period depends

on the time path followed by the instantaneous harvest rate during the

period. This time path will be different under different instruments.

Therefore, marginal cost cannot be expressed in conventional form as a

function of a single variable, cumulative catch. Consequently,

intuitively satisfying explanations of the model’s results are

difficult to produce.
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CHAPTER 4

NONLINEAR MODEL WITH ENDOGENOUS HARVESTING CAPITAL:
NUMERICAL DYNAMIC PROGRAMMING

INTRODUCTION

The linear specification of the marginal benefit, marginal cost,

and growth functions, and the treatment of capital as an exogenously

fixed parameter, are necessary for derivation of analytical results.

However, these assumptions are unrealistic for several reasons. Two of

them are among the most important. First, the linear appearance of

stock size in the marginal harvest cost function implies that

harvesting could take place even when stock size is zero. Second,

linearity of all three functions implies a maximum present value from

optimal management, V(X), which is quadratic in stock size. This means

either 1) that as stock size multiplies, present value increases at an

ever-growing rate, thus defying the law of diminishing returns;

or 2) that present value eventually declines and becomes negative,

which is also counter-intuitive.

If the model is constructed and estimated in more plausible non-

linear form, comparison of regulatory instruments can only be

accomplished through numerical dynamic programming. This chapter

describes such a nonlinear model and discusses numerical dynamic

programing with it.
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STOCK GROWTH FUNCTION

The growth function, F(X), is most commonly estimated in

"generalized stock production model". form:

greater than one (Abramson and Tomlinson, 1972). This form has the so-

called "dome" shape, with the the highest point on the dome

representing maximum sustainable yield.

MARGINAL COST

A more reasonable marginal harvest cost can be derived from

harvest production and effort production, functions. The instantaneous,

harvest production. function is

where q is a parameter called the "coefficient of catchability," and E t

is the instantaneous rate of effort application to the fish stock.

Effort in a trawl fishery may be measured in units of time spent

towing the trawl net through the water. Equation 4.02 is a common

specification in the biology literature, and is not unreasonable for

effort and harvest rates below the levels at which the fishing grounds

become congested with vessels, or at which the entire stock is taken

instantaneously. Assuming that the stock is of uniform density,

harvest could plausibly be proportional to effort at a given stock

size.



72

Production of effort, in turn, is assumed to be a function of

three inputs: capital, measured by the number of boats fishing for the

species in question; labor, measured in man-hours spent on board

(whether or not the net is being towed); and fuel, measured in ‘quantity

consumed both in fishing and in running to and from port. The amount

of running time per unit of fishing time is fixed to the fisherman,

i . e . , it is not a choice variable, but it is affected by the weather,

the time of day (light or dark), and the level of maintenance that has

been performed on the vessel and its equipment. This assumption

explains how the instantaneous marginal cost derived below when the

number of vessels in the fleet is temporarily fixed can be upward

sloping even if the parameter values in the production function imply

constant long run marginal cost. Increased effort requires ‘existing

vessels to run to the grounds and fish at times when they otherwise

would have remained in port performing maintenance operations, among

o t h e r  t h i n g s .

It is further assumed that the number of crew members on a boat is

fixed, and that the quantity of fuel consumed in operating the vessel

for a unit of time is fixed; Thus, the ratio of fuel to labor is also

fixed. 

The effort production function is assumed to have the Cobb-

Douglass form in capital in season i, Ki, and instantaneous fuel and

labor consumption (a composite input), F t

For a given number of boats, which is assumed to be fixed for the

duration of the season, the total variable cost of effort is PFFt,
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where PF is the price of a fuel-labor unit. Rearranging the effort

production function (equation 4.03) to express Ft as a function of

effort and capital (and suppressing the rate of change dot and the

subscripts) gives
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MARGINAL     BENEFIT

Marginal benefit at the ex-vessel level is derived from the

marginal benefit accruing to processors from their sales of processed

fish to buyers at higher levels. The derivation takes into account the

cost of processing the fish purchased from fishermen.

One can assume that processors are output price takers, and that

the processing production function is characterized by fixed ratios of

output of processed fish, Y, to input of raw fish, H (C. Carter, Oregon

Dept. of Fish and Wildlife, 521 S. W. Mill St., Portland, OR 97201,

pers. commun.), and of output to input of a composite factor called

"processing effort E:

(4.09) Y = min(y1H,y2E),

where y1 and y2 are fixed proportions. Marginal benefit’ is therefore

obtained by subtracting marginal cost of processing effort from the

output price (converted to dollars per pound of raw fish).

The production of processing effort is assumed to be described by

a Cobb-Douglass function of processing capital, K; and labor:

where no, n 1, and n2 are parameters. Processing capital is assumed to

be exogenously fixed, so short run total variable cost is PLL, where

PL is the wage rate. Rearranging the effort production function gives

Substitituting this into PLL gives total variable cost as a function

of processing effort:
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From the processing production function (‘equation 4.09), one gets

Substituting’ this into equation 4.12 gives total-variable cost as a

function of harvest rate:

Finally, one candifferentiate equation 4.14 with respect to H to

obtain marginal processing cost (exclusive of the price of raw fish):

ENDOGENOUS HARVESTING CAPITAL

Harvesting capital is assumed to be completely fixed during the

fishing season, and perfectly variable between seasons. Fishermen

choose the number of vessels in their fleet for the upcoming season on

the basis of the expected present value of their profits during the

season, given knowledge of the stock size at the beginning of the

season and the level of the regulatory instrument that will be in

effect during the season. Obviously, these assumptions imply that

boats are added or removed instantaneously at the beginning of the

season, and that fishermen are not concerned about the future beyond
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the current year. For an alternative treatment of fleet investment,

see Charles (1983a).

As does any industry characterized by many firms in perfect

competition, the fleet behaves as if it were trying to maximize the sum

of consumer and producer surpluses (discounted by the interest rate, m),

minus total tax expense (which is zero if a quota is used),. That is,

it chooses the fleet size, K, which maximizes

where B() is instantaneous total benefit, VC() is instantaneous total

variable cost, and FC() is instantaneous fixed cost, or cost of holding

capital . (One should recall that z is the fishing season closing

date.) Total variable cost is the indefinite integral of marginal cost

with respect to harvest rate, and fixed cost is defined as

(4.18) FC(K) = (m+d) PC K,

where d is the depreciation rate, and PC is the price of a unit of

capital. 

It was shown in Chapter 2 that Xt and

of beginning-of-season stock size, X0, and

Ht are ultimately functions

the current level of the

instrument,. Q or T, as well as of time.

While the unit of measurement of capital is the vessel,‘ it is not

necessarily true that the relevant price of capital, P C, is the price

of the entire vessel. If the vessels used in the fishery in question

are also used in other fisheries, then Pc is less than the purchase

cost of the vessel. The important consideration is whether the
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decision to build, import to the region, or keep in the region a boat

which is equipped to fish for the species in question and others was

made with this fishery explicitly in mind. If the decision was made

without thinking of this fishery, then only the the price of adding

equipment specialized to this fishery is included in PC.

The decision to build or import a vessel is based on the expected

profit stream from all fisheries in which it is intended for use. The

price of the vessel is a fixed cost for the entire collection of

fisheries. The approach taken here to determining the value of PC is

to adjust it until the predicted equilibrium fleet size under a tax

level set equal to zero is approximately the observed fleet size for a

comparable estimated beginning-of-period stock size.

When vessels participate in more than one fishery and when there

are significant output market and ecological interactions between

species, it may be worthwhile to manage all the affected fisheries

jointly. On the other hand, the net effect of the various types of

interactions may be negligible.

An additional consideration in cost analysis is whether the boats

are used for other fisheries only in the off-season or could be used in

alternative fisheries at the same time the open season for this species

is under way. In the latter case, the potential alternative profit

availableto the vessel is part of the opportunity cost of fishing in

this fishery. If it is possible to switch between fisheries at any

time, alternative profit rate is part of variable cost; if the choice

of fishery is irrevocable during the season, the expected present value

of alternative season profits is an additional fixed cost, and another

term should be added to the expression for FC above.



78

With endogenous capital now incorporated into the model, the

single-period net benefit function is

NUMERICAL DYNAMIC PROGRAMMING

Introduction of either nonlinear specifications of the three basic

functions or of endogenous capital renders analytical dynamic

programming, illustrated in Chapter 3, impossible. However, numerical

computer methods are available. Numerical dynamic programming

comprises a family of efficient algorithms for searching a set of

feasible time paths of control variables to find the one which

maximizes or minimizes a series of objective functions. Just as in

analytical dynamic programming, when the model is stochastic, the

entire optimal time path of the control cannot be determined in

advance. Instead, a rule for setting the control at its optimal level

at each instant or time period, given the value of the state

variable(s) in that instant or period, is derived. The principle

‘behind dynamic programming is explained in

Chapter 3. Dreyfus and Law (1977) provide

detailed introduction to the method, while

the first section of

a well written, more

Swierzbinski (l981) is

helpful on the subject of actually implementing the method on a

computer.

Numerical dynamic programming requires the approximation of the

infinite number of values that can be assumed by continuous variables

with a finite number of discrete values. I n  t w o - d i m e n s i o n a l
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terminology, each combination of state and control variable levels is

called a grid point. In each of a specified number of time periods,’

and for each of the selected stock sizes, the algorithm searches the

range of selected instrument levels to find the level which maximizes

the value of the stock.

The value of the stock in a particular period consists of

current single-period benefits plus the present value of the stock at

the beginning of the following period. It is necessary to begin the

algorithm at the last, or terminal, period, when the value of the stock

in the following period is known. (This stock value is assumed to be

zero if the terminal period is far enough in the future, typically 100

ye&s, to adequately approximate infinity.)

Once the value of the stock at each stock size in the terminal

period has been determined; these values are used to determine the

following-period stock values for the period just prior to the terminal

period. This process continues as the algorithm works backward in time

to the first period;

The first step in computing the current single period net benefits

produced by each of the grid point instrument levels for a given stock

size is to find the equilibrium fleet size chosen by fishermen, given

stock size and instrument level. This is achieved by searching over a

range of selected fleet sizes to find the one which maximizes the

expected present value of net benefits minus tax revenue,

equation 4.17. For each of the trial fleet sizes, the algorithm must

integrate the instantaneous benefit and cost rates over time from the

beginning of the season to the closing date. This is accomplished

numerically by dividing the season into small, discrete time intervals
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and assuming that the benefit and cost functions are constant over each

time interval. The area under the net benefit curve is then the sum of

the areas of the columns created by division into discrete intervals.

At each point in time during the integration, equilibrium

instantaneous harvest rate must be found by solving the equality of

marginal benefit and marginal cost plus tax. This is done numerically

by searching over a range of selected harvest rates to find the

solution. Alternatively, an efficient iterative program for

maximization of total net benefits over harvest rate may be used.

The functional forms of MB and MC postulated above guarantee that there

is no danger of multiple maxima. Of course, in the quota program, if

equilibrium harvest rate exceeds the quota level, harvest rate is set

equal to the quota.

Since both instantaneous variable cost and equilibrium harvest

depend on the stock size at instant t, integration of the stock growth

differential equation in order to

point is performed simultaneously

benefit function.

compute the stock size at each time

with the integration of the net

The entire simultaneous integration procedure must be repeated for

each combination of the possible values of the stochastic disturbances

so that expected values of current and future net benefits can be

calculated. The distributions of these disturbances (which might be

assumed to be normal) are divided into discrete intervals by selecting

a limited number of possible disturbance values, and approximating the

probability density function as constant around each-disturbance value

for half the distance between disturbance values. The probability of

each disturbance value is then the area of its column under the
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probability density function. If the disturbances are independently

distributed, the joint probability of each combination of values for

the three disturbances is simply the product of their marginal

probabilities.

After the equilibrium fleet size for a possible instrument level

is computed, the evaluation of benefits produced by that instrument

level can proceed. The expected present value of single-period net

benefits minus tax revenue has already been computed during the search

for equilibrium fleet size, and after adding tax revenue to this

quantity again, all that. remains is to compute the expected present

value-of following-period stock size.

Following-period stock size resulting from the trial tax level for

each combination of disturbance values is computed by integrating the

growthdifferential equation over time from zero to one, solving for

equilibrium harvest rate at each time point. This has already been

done for the fishing season (t = 0 → z) during the search for

equilibrium fleet size, but the integration must still be carried out

for the closed season.

The final step is to compute the present value of each of the

stochastic following-period stock sizes by referring to the array of

present values already computed for the following time period

during the previous iteration of the algorithm’s outermost loop. These

present values were computed for each of the grid point stock sizes.

Since the following-period stock sizes computed by integration of the

growth equation will rarely equal any of the grid point stock levels,

it is necessary to estimate their present values by linear

interpolation of the present values of the grid point stock sizes.
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CHAPTER 5

APPLICATION TO THE PINK SHRIMP (Pandalus jordani) FISHERY

INTRODUCTION

The parameters of the bioeconomic model developed in previous

chapters were statistically estimated for the fishery based on pink

shrimp, Pandalus jordani, off the U.S. Pacific coast. Then numerical

dynamic programming was applied to the statistical model in order to.

compare the expected present values of the stock under both optimal tax

and optimal’ quota regulation. This chapter first describes the

biometric.-and-econometric methods used and presents the estimates.

Next, it describes the dynamic programming algorithm and reports the

computed present values, along with optimal tax and quota levels and

predicted fleet sizes.

Superscript numerals in the text which are not associated with

mathematical expressions refer to the notes at the end of this chapter.

ESTIMATION OF PARAMETERS

The three equations of the model outlined in Chapter 4 are the

marginal benefit (MB)., marginal cost (MC), and stock growth functions:
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where H is harvest, X is stock size, PY is price of processed shrimp,

and K is the number of boats fishing, during the period. A dot over a

symbol means instantaneous time rate. of change,, the subscripted lower

case letters and n are parameters to be estimated, and u and v are

stochastic disturbances. The continuous time subscript t has been

omitted from the rate variables, and the period subscript i has been

omitted from K and from the disturbances. The constants b0 and co are

composites of exogenous shift variables which will be named below.

No disturbance is shown in the stock growth function because it is

used only to derive the stock size function

where X i-1 , is the stock size at the beginning of period i, Zki is the

level of regulatory instrument k during period i, t is (continuous)

time, and wi is a stochastic disturbance. The disturbance is assumed

to have the same distribution regardless of which instrument is chosen.

If a disturbance had been written into the stock -growth function,

equation 5.03, it would have implied disturbances which entered the

stock size’ function in complicated and varying ways, depending on the

instrument chosen and the value of n. Estimation of the variance of

the growth function disturbance would be quite difficult.

The stock growth function cannot be estimated directly in the form

specified by equation 5.03 because there are no data on the rate of

change of stock size. Instead, a transformation is made, beginning

with assumption of a harvest production function of the form

where q is the catchability coefficient, and E is instantaneous rate of

fishing effort. No data on instantaneous harvest and effort rates
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exist, but periodic cumulative figures do exist. With substitution of.

the expected value of stock size plus disturbance, E[Xt] + wi, for

actual stock size, X t, cumulative harvest in period i is

Et is assumed to be constant throughout period i (as is w), allowing

equation 5.06 to be written as

Equation 5.05 is substituted into the stock growth function

and the solution to this differential equation (the stock size

function) is substituted for E[X t] in equation 5.08. The resulting

equation can be estimated by a nonlinear least squares procedure on

harvest and- effort data.1 (See Rivard and Bledsoe 1978 for  a more

complete discussion.)

A computer program (PARFIT) written at the University of

Washington Center for Quantitative Science. in Forestry, Fisheries, and

Wildlife (Rivard 1977) was used to solve equation 5.09 and to integrate

and estimate equation 5.08 by means of an iterative least squares

method applied to semiannual2 catch and effort data for pink shrimp,

Pandalus jordani. Account was taken of the unequal variances of the

disturbances in equation 5.08 by modifying PARFIT so that it divided
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the residuals by qEi, before computing the sum of squares. The data

were obtained from the Pacific Marine Fisheries Commission's Data

Series, and covered the period 1957-81, providing 50 observations. The

results of the estimation are

The R2, F, and t statistics are not presented because PARFIT produces

estimates of the parameters and statistics of equation 5.08, not of the

stock growth equation shown. The parameter estimates shown above were

derived from the estimated parameters of euation 5.08 (Rivard, and

Bledsoe 1978), all of which were significant at the 1% level, both

individually and jointly (the R2 and F statistics for equation 5.08 are

0.116 and 33.97, respectively). The estimated variance is of the stock

size function, not the stock growth function. The  es t imated  growth

function is a near-parabola, a dome with a maximum sustainable yield of

116.6 million pounds per year (in year-round fishing), and a maximum

sustainable stock size of 186.4 million pounds. These parameter

estimates, if accurate, describe a stock capable of quite rapid growth.

They do not appear, however, to be excessively out of line with some

estimates obtained for other fast growing species. Fox (1972) presents

estimates of f0 for Alaska pink shrimp ranging as high as 1.66 and

Francis (1974) uses estimates of f0 for yellowfin tuna, thunnus.

albacares, ranging up to 1.9.

Ex-vessel price and instantaneous harvest rate in the pink shrimp

fishery are assumed to be jointly determined at every instant by

equilibrium in a demand (marginal benefit) and supply (marginal cost)
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equation system; This assumption seems a reasonable approximation

because: l) quotas have not been used, except in California, which has

contributed only a small proportion of the catch; 2) the negotiated

price agreed to. by organizations representing fishermen and processors

has apparently been lower than the actual price most of the time (C.

Carter, Oregon Department of Fish and Wildlife, pers. commun.); and

3) effort on shrimp is rapidly adjustable, either by varying the

length and frequency of fishing trips or by switching to alternative

fisheries (e.g., groundfish or crabs). This permits equilibrium to be

quickly reached as conditions change (C. Carter, Oregon Department of

Fish and Wildlife, pers. commun.).

The marginal benefit and marginal harvest cost functions were

‘estimated simultaneously using a nonlinear two-stage least squares

method developed by Kelejian (1971) and Amemiya (1974). This method

involves regressing the endogenous variables of the system on low

degree polynomials of the exogenous variables (to approximate unknown

nonlinear reduced form equations),. then iteratively minimizing the sum

of squared differences between observed and predicted values of the

endogenous variables. The method yields consistent but generally not

asymptotically efficient estimators when the model is nonlinear in both

variables and parameters.

An alternative estimation procedure is accomplished by linearizing

the equations by taking the logarithm-of each side. Then the standard’

two-stage least squares method is applied, with the coefficients 

constrained to reflect relationships implied in the derivation of the

marginal benefit and marginal cost functions from the harvest and

processing production functions, e.g., c l = (1/e2)-1. When serial
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correlation is indicated, estimation is redone using the maximum

likelihood method.

This method also yields consistent estimators, but in this.

particular model it probably does notachieve asymptotic efficiency.

The reason is that the price of the processed product, Py, enters the

original marginal benefit equation additively (with its coefficient

known to be equal to one), and before logarithms are taken, Py must be

moved to the left side of the equation, from which it is subtracted.

The exogenous variable Py affects-the predicted value of the endogenous

variables, but having been incorporated into the dependent variable of

the MB equation, it does not appear as an argument in the reduced form

equations of the log-linear model. Hence, the predicted values of the

endogenous variables obtained in the first-stage regression are biased.

estimates of the true expected values of the endogenous variables, and

therefore may not be the best instruments to use for the endogenous

variables in the second stage.

The log-linear forms of MB and MC were estimated in this study as

described in the preceding paragraphs, but despite constraining the

exponents of the harvesting and processing effort production functions

to sum to one (the linear homogeneity assumption), the implied value of

e1, the exponent of harvesting capital, was negative, and e2, the

exponent of the fuel-labor input, was greater than one. This can

happen because the constraint does not force the individual exponents

to lie between zero and one, only to sum to one.

Neither the nonlinear two-stage method of Kelejian and Amemiya or

the log-linear two-stage least squares method produce estimators which

are known to be unbiased and efficient in finite samples. Therefore,
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the estimates obtained by the former method were. selected for

presentation and for use in the dynamic programming solely because they

conformed more’ closely to expectations about signs and magnitudes.

It is assumed that buyers and sellers equate marginal. benefit and

marginal cost, respectively, to the ex-vessel price of pink shrimp.

Thus, price data give an accurate measure of marginal benefit and

marginal cost.

At the ex-vessel level, marginal benefit from shrimp accrues to

processors, and isderived from marginal benefit at the wholesale and

higher market levels. The arguments in the marginal benefit function

include, in addition to the-rate at which shrimp are purchased from

fishermen (quantity), the price of processed pink shrimp, the quantity

of fixed capital extant, variables contributing to processing cost, and

processor inventories.

Since Pacific. coast pink shrimp production is a minor (less than

10%) part of the total production and importation of shrimp in the

United States, it was assumed that the price received by pink shrimp

processors for their processed product is unaffected by the quantity

they produce. Hence, the price of processed pink shrimp can be treated

as an exogenous variable.

Unfortunately, no data on pink shrimp processor inventories could

be found, nor could data on processing input prices be found. The 
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results of estimating the marginal benefit function with the data that

(1.001)

estimated variance of u = 0.0130

Durbin-Watson statistic = 0.5255

where PEX = ex-vessel price of pink shrimp,

HAR= harvest rate,

PWH= wholesale

processed

PLT = Number of

price of processed pink shrimp, reduced by a

weight/round weight conversion factor of 0.22,

plants processing pink shrimp, and

the numbers in parentheses are the t-statistics for the associated

parameter estimates. The t-statistics are measures of the reliability

of the estimates. The Durbin-Watson statistic is a measure of the

degree of serial correlation in the disturbances.

All coefficients have the appropriate signs, and the exponents

have theoretically reasonable magnitudes. The implied degree of

homogeneity of the processing effort production function derived in

Chapter 4 is 0.9871, which in turn implies very nearly constant long

run average cost.

The t-statistics are all rather low, and none of the variables

appear significant if the t-statistics are used for hypothesis testing.

The Durbin-Watson statistic suggests serial correlation. However, the

econometrics program, TSP, used to estimate the equations has no

capability to treat this problem in nonlinear models. Moreover, the
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computed t-statistics do not have-the distributions necessary for use

in standard tests when the estimator is not efficient, and should not

be so used.

In addition to the harvest rate, stock size, and number of

vessels fishing for shrimp, marginal harvest cost is a function of the

prices of fishing inputs, such as diesel fuel, and the profitability of

alternative fisheries. Data on profitability of alternative fisheries,

on prices of inputs other than fuel, and on stock size were not readily

available, but estimates of stock size were obtained by dividing

monthly catch per unit of effort by the estimated catchability

coefficient.

Stock size is determined by time path of previous harvest rates,

but is exogenously fixed to the system at instant t. Fleet size is

endogenous in the sense that it is determined by beginning-of-period

stock size and instrument level and may even be stochastic, but it is

not correlated with any of the current disturbances of the system. It

is therefore also treated as an exogenous variable for estimation

purposes.

The estimated marginal cost function is
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where STO = estimated stock size,

PFU = price of diesel  fuel ,  and

BOT = f l e e t  s i z e .

Again all coefficients have the appropriate signs, and the

exponents have reasonable magnitudes , implying an effort production

function which is homogeneous of degree 1.008. The Durbin-Watson and

t-statistics are low, but hypothesis testing in this case is not

rel iable.

Ideally, for the model constructed in this study, data on flow

variables would measure instantaneous rates and data on state variables

would measure levels. at points in time. In reality, however, average

rates and levels must be used, preferably measured over the shortest

intervals possible. The assumption is then made that levels and

instantaneous rates were constant over the interval. In the case of

the pink shrimp model, weekly, monthly, semiannual,, and annual data

were used, depending on the variable.

One observation per year was taken on all variables because the

theoretical model is based on assuming disturbances which remain

constantthroughout each year. The econometric method employed here,

on the other hand, requires assuming that the disturbances change at

observation. If observations taken at more than one point in each year

were used in the regressions, difficult adjustments for autocorrelation

in the disturbances would be called for.

Data for variables collected weekly were measured over a week near

the beginning of June, which is well into the April-through-October

shrimp fishing season. Data for variables collected monthly were

measured over the entire month of June.
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The period of the annual time series was 1968-82, giving 15

observations. Sources of the data:

PEX: 1976-82 data are early June ex-vessel prices taken from a series

on prices at Oregon ports reported weekly Fishery Market News (“the

pink sheet") published by the National Marine Fisheries Service

Northwest Regional Office. Prices for 1968-75 are estimated season

average prices collected from various state government sources and

reported in the Draft Fishery Management Plan for the Pink Shrimp

Fishery produced by the Pacific Fishery Management Council in 1981.

Use of these season averages was necessary because the weekly series

did not begin until 1976, For the years 1976-78, the price changed

very little during the course of each season, a fact which gives hope

that the same was true in earlier years. If so, the annual average

prices would- be approximately the same as the early June prices.

HAR: June landings coastwide, taken from monthly. data reported by the

Pacific Marine Fisheries Commission (PMFC), and multiplied by 12 to

convert  to annual equivalent.

STO: Estimated stock size, generated by dividing June catch per unit

of effort (as reported by PMFC) by an estimate of the catchability

coefficient obtained from the procedure employed in estimating the’

stock growth function. The harvest production function, H = qXE,

yields this estimator of stock size. The simple correlation between

harvest and harvest per unit of effort is 0.0705.

An alternative method of estimating stock size is to solve the

estimated stock growth function, which is a differential equation
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expressing the rate of growth as a function of stock size, then use the

solution to generate a time series. of stock sizes. However, this

procedure requires an estimate of initial stock size, which must be

obtained by dividing catch per unit of effort in the first period by

the estimated catchability coefficient. Moreover, the procedure would

yield increasingly less accurate estimates as the time series

progressed farther from the starting time because of the cumulative

effect of the disturbances on actual stock growth.

PLT: Number of plants processing pink shrimp each year. From Pacific

Packers Report, published annually by National Fisherman. These data

contain some apparent errors, and are of doubtful accuracy. Also, the

number of plants is not a good measure of the quantity of capital

specialized to shrimp processing.

BOT : Number of boats landing pink shrimp each year. From Draft

Fisher Management Plan for the Pink shrimp fishery, issued by the

Pacific Fishery Management Council in 1981. The quantity of capital

specialized to shrimp fishing and the proportion of the value of the

entire vessel allocated to shrimp fishing are both assumed to be

constant over time and across vessels.

PWH : Annual unit value (total value divided by total quantity) to

Pacific coast processors of cooked, peeled, and frozen shrimp. From

P r o c e s s e d - Fishery Products Annual summary, issued by NMFS. T h e  u s e  o f

these annual averages is appropriate because frozen shrimp can be

stored for months and released to the market on a schedule which

smooths price fluctuations. The price should not vary much over the
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course of a- year. Furthermore, processor demand for landed shrimp

should depend on the expected price of their product over the next few

months rather than the immediate instantaneous price, and the annual

average price may correlate with expected price more accurately than

does instantaneous price.

PFU: Data for 1976-82 are wholesale prices of diesel fuel to

commercial consumers in the Pacific region. Data for 1974-75 are

wholesale prices of diesel fuel to commercial consumers in the entire

United States. Data for 1968-73 are wholesale prices of diesel fuel in

Los Angeles. All are taken from June issues of Producer Prices and

Price Indexes published by the Bureau of Labor Statistics.

ADDITIONAL PARAMETER VALUES AND GRID RANGES

Exogenous variables in the marginal benefit and cost functions are

assumed to remain constant at their 1982 levels throughout the planning

horizon.

The interest rate, m, is 0.05.

The discount rate, r, is 0.05.

The depreciation rate, d, is 0.4.

The price of harvesting capital used in shrimp fishing, PC, is

$75,000.

The length of the fishing season, z, is 7 months (0.5833

years).

With the exception of season length, which is set by regulation in

Oregon and by winter weather in Washington, the above parameter values
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are ones which were found by trial and error to result in a reasonable

prediction of fleet size with the tax set at zero and all other

parameters set at their 1982 values. (Stock size was set at thirty

million pounds, the value obtained by dividing June 1982 catch per unit

of effort by estimated catchability coefficient.) The predicted fleet

size under these conditions is 200 vessels, compared with an observed

fleet of 226 vessels in 1982.

Grid variable characteristics are given in Table 1.

DYNAMIC PROGRAMMING RESULTS

Tables 2 and 3 present the numerical dynamic programming results,

which show that tax and quota regulation would produce approximately

the same expected present value of net benefits in the pink shrimp

fishery. Tax regulation benefits are slightly higher at most initial

stock sizes, but the difference is insignificant, and may be due to

approximation error.

The optimal quota levels are expressed as annualized instantaneous

harvest rates. The cumulative harvest for the open season if the

quota harvest rate were binding at every instant during the season is

found by multiplying the quota by the length of the season (7/12 in

this case), and is shown in the third column of Table 2. However,

since the quota is only an upper bound on the instantaneous harvest

rate, equilibrium harvest rate is sometimes less than the quota.

Thus, the expected cumulative harvest for the season, in the fourth

column, is always less than the fixed rate total.
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Table 1 .--Grid variable characteristics.
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Table 2.--Optimal quota level, cumulative harvests, fleet size, and
expected present value of fishery under optimal

quota management.

Table 3.--0ptimal tax level, expected cumulative harvest, fleet size,
and expected present value of fishery under optimal
tax management.



98

The reason the optimal tax declines as initial stock size rises is

that stock size enters the marginal harvest cost function in its

denominator. Thus, the marginal effect of stock size on harvesting

cost declines as stock size rises, and the size of the externality also

declines.

It should be noted that the optimal tax level of zero shown in

Table 3 for initial stock sizes greater than 180 million pounds does 

not imply that no restraint of fishing activity is required. Rather ,

zero is the closest grid point tax level to the true optimal tax level,

which is small, but positive. The quota levels shown in Table 2 for

these same stock sizes are probably almost, but not quite, high enough

to be nonbinding at all times during the fishing season, even when

stock growth is unexpectedly rapid and stock size grows unexpectedly

large.

It should also be noted that the stock would almost never remain

at the initial, or beginning-of-period, stock size as the season

progresses. Morever, the system may never reach a steady state during

the season. In addition, there is no reason to expect that beginning-

of-period stock size will be constant from one period to the next.

The complexity of the combined discrete- and continuous-time model

precludes an intuitive explanation of the result that tax and quota

regulation seem to be equally efficient in this fishery. However, it

is interesting to note that when the quota is assumed to be binding at

all times,, as in Weitzman’s analysis, the efficiency of quota

regulation is considerably weakened. This is  because harvest  rate is

less flexible under a binding quota than under an upper limit quota or

a tax. As Weitzman shows, output flexibility does not guarantee
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instrument superiority. However, in this model, it sometimes happens,

that equilibrium harvest rate is less than the quota., Since the full-

information optimal harvest rate at each instant is always less than

the equilibrium rate, the welfare loss at times when regulation causes

the actual harvest rate to be higher than the equilibrium rate is

greater than when the fishery is unregulated. The larger-is the

variance of the stochastic disturbance in the growth rate, the more

likely are very slow growth rates, and the longer is the part of a

season (which begins with a low initial stock size) during which

equilibrium harvest rate is less than the quota. Thus, under the

binding quota assumption, higher growth rate uncertainty decreases the

relative efficiency of the quota.

A noteworthy feature of the numerical dynamic programming exercise

is the amount of time required for the programs to run on a computer.

They were so expensive that it was necessary to shorten them by

reducing the number of stochastic equations in the model from three to

one (the stock size equation) and assuming that the remaining

disturbance had only two possible values instead of a normal

distribution, by running for only 50 time periods instead of 100, and

by reducing the number of grid point levels of all variables.

The same constraints on research time and computer resources which

forced these reductions prevented assessment of the loss in

approximation accuracy they imposed. A single run of one of the

shortened programs required almost 7 hours of processing time on the

Northwest and Alaska Fisheries Center’s Burroughs B7800. Total

computer use charges accumulated during the course of debugging and
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calibrating the programs exceeded $30,000. Sensitivity analyses were

prohibitively expensive and were not performed.

The results displayed in Tables 2 and 3 do not mean that

managers of the pink shrimp fishery should be indifferent about the

best instrument for regulating the fishery., In the first place, the

econometric model is highly simplified, for reasons both of convenience

and of data unavailability. In the second place, as was made clear in

the introduction, the only criterion for ranking instruments in this

analysis is expected

No consideration was

political and social

present value of consumer and producer surpluses.

given to administrative and enforcement costs,

acceptability, or other f a c t o r s .
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CHAPTER 5 

NOTES

1. The independent variable, effort, is treated as though it were

exogenous. In fact, effort is determined by the solution of the three-

equation system comprising marginal benefit, marginal harvest cost, and

stock growth. It might be worthwhile to regress effort on the

exogenous variables of the system, and then use predicted values of

effort in the estimation of the stock growth function. However, this.

was not done because of the inconsistency described in note 2 and

because of the complicated transformations required.

2. Since the estimation procedure requires the assumption of a

(probably) different disturbance value at each observation, use of

semiannual data is inconsistent with the assumption made in this study

that disturbances change value only once a year. Annual data could

have been used, but that would have resulted in a serious violation of

another assumption made in the estimation procedure, namely, that the

effort rate is constant during the period of each observation. Use of

semiannual data (monthly data was available) was a compromise in

satisfying the assumptions of annual disturbance changes and constant

effort rate during observation period.

Each year was divided into a 6-month open season and a 6-month

closed season. The actual shrimp fishing season is about 7 months

long, but the last month, October, is usually a light harvest month,

and its catch was assigned to the closed season. This was necessary
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because PAFFIT requires observation periods of equal length, and no

time gaps between observations are permitted.
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APPENDIX A

DERIVATION OF SELECTED EQUATIONS IN CHARTER 1

MSB = G (Page 15)

It is easily shown that at the optimum point, MSB, defined by

equation 1.07, is equal to G, defined by equation 1.05. Repeating

equation 1.05, one has,
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variances of u, v, and w. The latter step is accomplished as follows:
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APPENDIX B 

DERIVATION OF SELECTED EQUATIONS IN CHAPTER 2

QUOTA

Stock Size Function (Equation 2.05)

Equation 2.03 is used to derive Xki(Xi-1 ,Zki ,t) . For k = 1

(quota), harvest rate is fixed during each period by the quota. The

stock growth function is

where Qi = Z1i is the level of the industry quota in period i. Now the

elapsed time required for the stock to grow in period 1 from its size

at the beginning of the period, X0, to Xt is t :
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Finally, collecting terms with f0-Q, and solving for X t (and

adding a stochastic disturbance, w), one derives

Single-Period Net Benefit Function (Equation 2.07)

Single-period net benefits are defined as in equation 2.04, which

is repeated here as the first step in the derivation:
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This last expressioncan be written

TAX

Equilibrium Harvest Rate (Equation 2.12)

When a per-unit tax is employed (k = 2), the instantaneous

harvest rate is a function of X t and the current tax, T i. The

relationship is found by equating the demand function with the marginal
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After collecting terms, the stock growth function is
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Collecting terms with A + x - T , solving for Xt, and adding the

growth disturbance, w, gives
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APPENDIX C

DERIVATION OF SELECTED EQUATIONS IN CHAPTER 3

QUOTA

Stock Size Function (Equation 3.06)

In many fisheries, fishing does not proceed year round, but is

subject to a closed season. Fishing may be halted each year by

regulations designed, for example, to protect gravid females, or by

natural events such as the annual departure of the fish or the onset of

winter weather. The period can be divided into two seasons: the first

season open for fishing, and the second

season, of length z, begins at time t =

while the closed season, of length l-z,

season closed. The open

i-l and ends at t= i-l + z;

begins at t = i-l + z and ends

at t = i. Then the size of the stock at the end of the first period

(the beginning of the second period) can be found by substituting Xl

for Xt in equation B.06, Xz (stock size at the beginning of the closed

season) for X0, and l-z for t, one recalls that there is no harvest

between t = z and t = 1:
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Substituting this expression for Xz in equation C.01 gives

TAX

Stock Size Function (Equation 3.21)

Finding stock size at the end of period 1 when there is a closed

season beginning at t = z requires use of-equation B.06 as follows:

Expressing X1 as a function of stock size at the beginning of the closed

season X il+z  gives



119

In turn, Xz is a function of X0, again using equation B.06:
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